Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.

نویسندگان

  • S Engst
  • P Vock
  • M Wang
  • J J Kim
  • S Ghisla
چکیده

The flavin adenine dinucleotide (FAD) cofactor of pig kidney medium-chain specific acyl-coenzyme A (CoA) dehydrogenase (MCADH) has been replaced by ribityl-3'-deoxy-FAD and ribityl-2'-deoxy-FAD. 3'-Deoxy-FAD-MCADH has properties very similar to those of native MCADH, indicating that the FAD-ribityl side-chain 3'-OH group does not play any particular role in cofactor binding or catalysis. 2'-Deoxy-FAD-MCADH was characterized using the natural substrate C8CoA as well as various substrate and transition-state analogues. Substrate dehydrogenation in 2'-deoxy-FAD-MCADH is approximately 1.5 x 10(7)-fold slower than that of native MCADH, indicating that disruption of the hydrogen bond between 2'-OH and substrate thioester carbonyl leads to a substantial transition-state destabilization equivalent to approximately 38 kJ mol-1. The alphaC-H microscopic pKa of the substrate analogue 3S-C8CoA, which undergoes alpha-deprotonation on binding to MCADH, is lowered from approximately 16 in the free state to approximately 11 (+/-0.5) when bound to 2'-deoxy-FAD-MCADH. This compares with a decrease of the same pKa to approximately 5 in the complex with unmodified hwtMCADH, which corresponds to a pK shift of approximately 11 pK units, i.e., approximately 65 kJ mol-1 [Vock, P., Engst, S., Eder, M., and Ghisla, S. (1998) Biochemistry 37, 1848-1860]. The difference of this effect of approximately 6 pK units ( approximately 35 kJ mol-1) between MCADH and 2'-deoxy-FAD-MCADH is taken as the level of stabilization of the substrate carbanionic species caused by the interaction with the FAD-2'-OH. This energetic parameter derived from the kinetic experiments (stabilization of transition state) is in agreement with those obtained from static experiments (lowering of alphaC-H microscopic pKa of analogue, i.e., stabilization of anionic transition-state analogue). The contributions of the two single H-bonds involved in substrate activation (Glu376amide-N-H and ribityl-2'-OH) thus appear to behave additively toward the total effect. The crystal structures of native pMCADH and of 2'-deoxy-FAD-MCADH complexed with octanoyl-CoA/octenoyl-CoA show unambiguously that the FAD cofactor and the substrate/product bind in an identical fashion, implying that the observed effects are mainly due to (the absence of) the FAD-ribityl-2'-OH hydrogen bond. The large energy associated with the 2'-OH hydrogen bond interaction is interpreted as resulting from the changes in charge and the increased hydrophobicity induced by binding of lipophilic substrate. This is the first example demonstrating the direct involvement of a flavin cofactor side chain in catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protonic equilibria in the reductive half-reaction of the medium-chain acyl-CoA dehydrogenase.

Oxidation of thioester substrates in the medium-chain acyl-CoA dehydrogenase involves alpha-proton abstraction by the catalytic base, Glu376, with transfer of a beta-hydride equivalent to the flavin prosthetic group. Polarization of bound acyl-CoA derivatives by the recombinant human liver enzyme has been studied with 4-thia-trans-2-enoyl-CoA analogues. Polarization is maximal at low pH, with a...

متن کامل

Acyl-CoA dehydrogenases and acyl-CoA oxidases

Acyl-CoA dehydrogenases and acyl-CoA oxidases are two closely related FAD-containing enzyme families that are present inmitochondria andperoxisomes, respectively. They catalyze the dehydrogenation of acyl-CoA thioesters to the corresponding trans-2-enoyl-CoA. This review examines the structure of medium chain acyl-CoA dehydrogenase, as a representative of the dehydrogenase family, with respect ...

متن کامل

Medium-chain acyl coenzyme A dehydrogenase from pig kidney has intrinsic enoyl coenzyme A hydratase activity.

The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl...

متن کامل

The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart

Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...

متن کامل

Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat liver medium chain acyl coenzyme A dehydrogenase.

cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 1999